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Abstract: 

I examine the Multifractal Markov Switching (MSM) volatility model of Laurent 

Calvet and Adlai Fisher (2004, 2008). I apply the MSM to daily log-returns of the 

S&P 500, 100, and their volatility counterparts, the VIX and VXO, and construct 

an intuitive volatility model with more than a thousand states, parameterized by 

only four variables. The multifractal outperforms a Gaussian-distributed GARCH 

in- and out-of-sample, yet does not fare as well against a Student-t distributed 

GARCH. However, I find the MSM to be significantly superior in forecasting 

accuracy at horizons of 20 to 50 days over both the Normal- and Student-

distributed GARCH. In the conclusion I suggest further applications of the MSM 

and its multifractal Markov structure. 

In statistics, the Gaussian distribution is the standard, so-coined Normal distribution that 

financial scientists assume their data to follow. It is the starting point for all statistical analysis, 

with extensions and adjustments calling for a deep understanding of the mathematics behind the 

theory, and graduate level study. It is both the enabler and the bane of statistical success, 

providing means for computation, yet misleading with its clean theory that all too often fails to 

hold in empirical reality. 

However, in our endeavors to better match the behavior of the empirical world, we are 

left with few alternatives. The mathematical extensions and conditions we layer upon our main 

statistical hallmark grow far and far more complicated as they reach for the boundary between 

theory and reality, requiring ever increasingly complex mathematics and proofs to maintain 

practicality. We must stay true to our normal distribution, no matter how false it may seem, 

because it is our main means of prediction. We forever increase our sample size and pray the 

central limit theorem holds. 

When statistics is applied to money, the disparities between theory and reality become 

tangible in disastrous ways. With the same brush, our statistics paint a false image of our 

security, misrepresenting the true potential for catastrophic failure, while creating discrepancies 

for those closest to the markets to take advantage of. In finance, the purity of capitalism courses 

through its agents, with most endlessly seeking arbitrage, and disregarding the inevitable crashes 

they set in motion with the ripples of their wake. 

In this gluttony we are reckless. In the realm of finance, we play with our math as though 

it had no bearing on reality, as though the ticks on our exchange boards were mere floating 

points that exist only for themselves. When it comes to our financial markets; when it comes to 

the security of our retirement and pension funds; when it comes to our reliance on money for our 

continued existence, we must be more responsible in our decision making. We must understand 

the connection between our financial theory and its significance to the real world. We must 

endlessly seek ever more effective means of scientific analysis, to better guide financial activity 

and better serve ourselves. 
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In this endeavor, I present a new statistical model for volatility modeling, called the 

Markov Switching Multifractal, or MSM for short. As does all financial theory, the intuition it is 

based on comes from nature; yet, the analogy it makes is incredibly novel, and presents an 

entirely new perspective on human interaction. In the following sections, I will introduce this 

natural analogy, track its extension to finance, and its most recent culmination in the MSM. With 

the MSM, I will turn to statistics and compare it to the hallmark of stochastic volatility modeling, 

the GARCH model. My analysis is in the form of Laurent Calvet and Adlai Fisher (2004,2008), 

the architects of the MSM, and applies their model to both the S&P 500 and the S&P 100, as 

well as the volatility indices of each, the VIX and VXO, respectively. 

Fractal Foundations 

 Developed by Mandelbrot in 1963, fractal geometry is the study of “roughness,” or the 

dimension between flat 2-dimensionsal geometry and clean 3-dimensional objects. The concept 

is very simple: “A fractal is a geometric shape that can be separated into parts, each of which is a 

reduced-scale version of the whole,” [Mandelbrot (2008)]. The driving intuition here is one of 

self-affinity or self-similarity; break up a fractal shape, and one finds the same pattern pervading 

through magnitudes of order. Think of veins in the body, neurons in the mind, limbs on a tree, 

nodes on the internet; all of these natural phenomena emerge in fractal structure, internally 

replicating a simple pattern to achieve incredible complexity [Andriani P, McKelvey B (2009), 

Schwarz & Jersey (2011)].  

To be more concrete, look at a tree. See the trunk, 

and how many limbs it initially splits into. Follow one of 

these branches, and one will observe the same splitting 

pattern into its smaller limbs. If one traces through all the 

way into the leaves, she will find the same branching 

pattern she observed in the beginning, when the trunk first 

split [Schwarz & Jersey (2011)]. This is the concept of 

self-similarity. (Another example of fractal intuition: an 

old fractal joke. What does the B in “Benoit B. 

Mandelbrot” stand for? Benoit B. Mandelbrot.) 

With extension to finance, Mandelbrot 

demonstrated this self-similarity in asset pricing in his 

widely cited 1963 paper on cotton prices [Mandelbrot 

(1963)]. As for modern developments, Calvet, Fisher, and 

Mandelbrot first constructed a financial conception of 

fractal nature in 1997, with their paper “A Multifractal 

Model of Asset Returns”, or MMAR for short. Without 

delving too deep in the complex mathematics behind the 

MMAR, the model essentially uses fractional Brownian 

motion, in conjunction with a fractal-based account for 

time. This fractal timeline is constructed by taking a line 

segment from 0 to 1 and breaking it into parts with a self-

similar generator. This generator is then applied on each 

new segment, and each new segment produced from that, and so on ad infinitum. To illustrate, an 

example is presented in graph 1 [Mandelbrot (2008)]. 
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 From the abstract to the MMAR: ‘[T]he MMAR contains long-tails, [and] long-

dependence, the characteristic feature of fractional Brownian Motion (FBM) In contrast to FBM, 

the multifractal model displays long dependence in the absolute value of price increments, while 

price increments themselves can be uncorrelated.” [Calvet, L., A. Fisher, and B. Mandelbrot. 

(1997)]. This is the purpose of applying multifractal constructs to model financial movements: to 

develop a model that accounts for long-tail probabilities, and long-memory dependence. 

However, the MMAR was subject to one critical flaw. Due to its multiple dimensional 

construction and grid bound nature, it lacked stationarity, and was not practical in application. 

This is where the Mandelbrot, Calvet, and Fisher (1997) leave the reader in the last paragraph of 

their conclusion: “The main disadvantage of the MMAR is the dearth of applicable statistical 

methods.” It could not be assessed by the same metrics as GARCH models, and thus lacked 

common ground to compare.  

In truth, this mere brushing aside of the MMAR feels unjust. The amount captured by its 

construction is impressive, and worthy of recognition. Yet, Mandelbrot’s incredible intelligence 

seems to have created something that only a contemporary can understand. In my paper, I focus 

on the MSM, as it is constructed in the same fashion as its econometric counterparts, but the 

MMAR provides invaluable information on the structure of financial data, even if not directly 

comparable to standard econometrics. 

 Regardless, this was the conflict that led me to Adlai Fisher and Laurent Calvet’s Markov 

Switching Multifractal (MSM) model (2004, 2008). Using a Markov structure, Calvet and Fisher 

are able to construct a statistically stationary model of returns that incorporates a multifractal 

structure in the various states the Markov process can take on. The rest of this paper will delve 

into the MSM, and apply it to two market indices and their volatility counterparts. 

The Markov Switching Multifractal (MSM) 

The MSM is a mathematically rich and complex model that is simultaneously simple and 

intuitive to understand. Take 𝑟𝑡 to be the log return of a financial asset or exchange rate, 𝑟𝑡  =

 𝑙𝑛(𝑃𝑡/𝑃𝑡−1), where 𝑃𝑡 is the price of the asset at time t, and 𝑃𝑡−1 the price at time 𝑡 − 1. The 

MSM then defines returns  𝑟𝑡 to be described by 

𝑟𝑡 =  𝜎(𝑀𝑡)𝜀𝑡 

I will now proceed to break up and describe these components. 

𝑀𝑡 is the driver of the economy, a first-order Markov state vector with 𝑘̅ components, 

𝑀𝑡 = (𝑀1,𝑡, 𝑀2,𝑡, … , 𝑀𝑘̅,𝑡), 

where the components of the 𝑀𝑡 vector have equivalent marginal distribution, but grow and 

change at different frequencies. To display this, assume that we have constructed the volatility 

state vector up to 𝑡 − 1. For each 𝑘 ∈ (1, 2, … 𝑘̅), the next period multiplier is drawn from a 

fixed distribution 𝑀, with probability 𝛾𝑘, or otherwise remains at its previous value, 𝑀𝑘,𝑡  =

 𝑀𝑘,𝑡−1. This can be displayed as 

 𝑀𝑘,𝑡 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑀           𝑤. 𝑝.    𝛾𝑘 

𝑀𝑘,𝑡  =  𝑀𝑘,𝑡−1                                          𝑤. 𝑝   1 − 𝛾𝑘 
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In this, the switching events and draws from 𝑀 are assumed to be independent across 𝑘 

and 𝑡, a necessary assumption for the Markov process to hold. Following these principles, we 

require the distribution of 𝑀 has the conditions, 𝑀 >  0, and 𝐸(𝑀)  =  1. 

𝛾, the driver of transition probabilities, is a vector, composed of 𝑘̅ components, 

𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑘̅) , 

where each component is specified by 

𝛾𝑘 = 1 − (1 − 𝛾1)(𝑏𝑘−1),

and 𝛾1 ∈ (0,1) and 𝑏 ∈ (1, ∞ ). This is to ensure 1. that the probability of switching increases as

the state, 𝑘, increases, 2. that this rate of increase slows as 𝑘 increases, and 3. that the parameter 

𝛾𝑘 remains <  1 for all 𝑘. The intuition is that the more stable, lower frequency multipliers 

switch less often than the higher frequency multipliers, therefore the 𝛾𝑘 vector increases in

switching probability as 𝑘 increases. 

To construct 𝑀𝑘,𝑡, the last piece missing is the 𝑀 distribution. In my paper I apply the 

simplest, binomial MSM, in which the random variable 𝑀 takes one of two values: 

𝑚0  𝑤. 𝑝.  1/2 

2 −  𝑚0  𝑤. 𝑝.   1/2. 

This form of MSM, which sets 𝑚1 = 2 −  𝑚0, allows a single parameter, 𝑚0, to establish the 

distribution 𝑀. In the code, this M distribution is inherent in the g(M) construction by dividing 

the  𝛾𝑘 values by 2, and separating them into 2 columns, 1 –  𝛾𝑘/2, and  𝛾𝑘/2. 

Compiling the 𝑀𝑘,𝑡 generators together, the MSM creates a state space 𝐴, with 2𝑘 states

that are each composed of 𝑘̅ 𝑀 multipliers. To illustrate, the value 𝑀𝑘,𝑡 is constructed as follows: 

𝜎(𝑀𝑡) = 𝜎(∏ 𝑀𝑘,𝑡
𝑘̅
𝑖=1 )1/2

Where, due to the independence of the 𝑀𝑘,𝑡 multipliers, 𝜎 is approximately the long run standard 

deviation of returns. 

In terms of conceptualizing this, it is useful to think of the 𝑀𝑡 states as binary numbers 

with 𝑘̅ placeholders. Take a 𝑘̅ of 4. In binary representation, with 4 placeholders, the possible 

numbers are {0000, 0001, 0011, …. 1111}, which constitute a state space of 24, or 16 possible

states. If we take 0 as a symbol for 𝑚0, and 1 as a symbol for 𝑚1, then the (∏ 𝑀𝑘,𝑡
𝑘̅
𝑖=1 ) value is

the product of each of these values: 0000 = 𝑚0
4; 0001 = 𝑚0

3 ∗  𝑚1; etc. Continuing this, the

right side of the 𝜎(𝑀𝑡) equation is completed by taking the square root of these products and 

scaling them by 𝜎. This is how the model is represented in the code and is how the state space is 

constructed. Each state is given an 𝑀𝑘, value, and its probability of moving to a different 𝑀𝑘 

value at time 𝑡 + 1 is equivalent to the combined probability of each possible switch from 𝑘 =

 (1, 2, … , 𝑘̅). As an example, taking this with the construction of 𝑔(𝑀) the probability of 

remaining in a given state equal to ∏ (1 − .5 ∗ 𝛾𝑖)
𝑘̅
𝑖=1 .
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All combined, the MSM is thus defined by 4 parameters: 

𝜓 ≡ (𝑚0, 𝜎, 𝑏, 𝛾𝑘̅) ∈ ℝ+ 
4 ,

with 𝑘̅ left out as a means of determining model selection. This small parameter space is one of 

the primary strengths of the MSM: in traditional Markov regime models, a free parameter is 

generally required for each state; in this construction, the MSM is allowed a vast state space that 

is specified by only 4 parameters. For instance, when 𝑘̅ = 10, the state space takes on 210 states,

or 1024. 

For an in-depth explanation of how the MSM is estimated in closed-form, I direct the 

reader to Calvet and Fisher’s book, “Multifractal Volatility: Theory, Forecasting, and Pricing,” 

or their 2004 paper in the Journal of Financial Econometrics, “How to Forecast Long-Run 

Volatility: Regime Switching and the Estimation of Multifractal Processes,” both cited below 

(Calvet, Fisher 2004, 2008), as I could only repeat, if not butcher, their explanations here. 

GARCH Model 

To assess the MSM’s efficacy, I compare it to the industry standard in stochastic 

volatility analysis, the generalized auto-regressive conditional heteroscedasticity model, or 

GARCH as it is well known. In my testing of numerous GARCH models, I found the Normal- 

and Student-distributed GARCH modes to be the best models for each data set. In line with 

Calvet and Fisher (2004, 2008), I considered a fractionally integrated GARCH, as well as a 

generalized-error GARCH in the spirit of Mandelbrot, however in the former the model failed to 

converge and optimize, and in the latter the likelihoods obtained were far below those of the 

Normal- and Student-GARCH. 

These models are defined as 

𝑥𝑡 = ℎ𝑡
1/2

𝑒𝑡,

Where 𝑒𝑡 are standard Normal Gaussian innovations (0,1) in the Normal-GARCH, and 

i.i.d. Student innovations with 𝑣 degrees of freedom in the Student-GARCH, which requires an

additional free parameter to estimate.

In the pursuit of parsimony, and corroboration from the literature [Calvet and Fisher 

(2004, 2008), Bollerslev (1987), Chuang et al. (2013)], I chose GARCH (1,1) to be the best 

descriptor of the data sets, which constructs ℎ𝑡 as follows: 

ℎ𝑡+1 = 𝜔 +  𝛼𝜀𝑡
2 + 𝛽ℎ𝑡
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Monte Carlo Analysis 

Log-Likelihood Evaluation 

To analyze the efficacy of the MSM code itself, I ran Monte Carlo simulations by 

generating data sets with the MSM code, and then evaluated the code’s ability to select the true 𝑘̅ 

value. My data is presented in table 1. 

In my trials I found the code to effectively select the true 𝑘̅, although with some caveats. 

In the table, I present the percentage of success in selecting the correct 𝑘̅ value, and an 

interesting outcome came out of this analysis: as expected, 𝑘̅ = 5 is selected far more often than 

all other 𝑘̅ values at 77.75 %; however, the second most selected is 𝑘̅ = 1.  The caveat I mention: 

in assessing the LL selection, I included a line that selected 𝑘̅ = 5 if it was among the highest log-

likelihoods. In essence, if there were multiple maximum log-likelihoods from a given simulation 

and 5 was among the models, I counted 5 as the model chosen. In removing this caveat, the 

results skew down to the lower 𝑘̅ models, with 𝑘̅ = 1 providing the maximum log-likelihood 

33.75% of all 400 trials, and 𝑘̅ = 5 exclusively only accounting for 6.75% of all trials. In my 

simulated series and trials, multiple models provided the same likelihoods, suggesting some 

indifference in the model selection code. 

This indicates that the function may underestimate the true 𝑘̅ for a given data set; 

however, in looking at the average log-likelihood across all simulations, 𝑘̅ = 5 provides the 

highest value. This suggests that, although when considered individually the lower-𝑘̅ models 

produce comparable log-likelihoods to the true k=5 model, overall, the true model provides the 

largest log-likelihood. This reinforces the legitimacy of the code and provides confidence in its 

model-selection capabilities. 

Running another set of Monte Carlo simulations displayed some interesting behavior 

with model selection tendencies based on parameter set-up. The second set of ln L analysis in 

Table A displays behavior that is more expected of the MSM – the percentage of time the true 𝑘̅ 

of 5 is chosen is still the highest among all possible values, but we see more spread in the 

neighboring 𝑘̅ values. The outlier here is the abnormally large ln L value for 𝑘̅ = 8, suggesting 

there exists some trade-off between parameter selection and possible frequencies, and the 

possibility that a more complex MSM model can effectively represent data generated by less 

complex parameters.  

I believe this second table better represents the model selection behavior of the MSM 

MLE function, as the values obtained in this analysis seemed more along the lines of my 

empirical data, and I worked to remove any failures or complications in the output. 
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Parameter Evaluation 

To evaluate the parameters, I performed the same Monte Carlo simulation as in the log-

likelihood evaluation, using the same parameters, yet with a 𝑘̅ = 8, as this resembled empirical 

results. 

In comparing the mean estimate for each parameter to its respective true value, the 

estimated values are close to the true values, but fail to capture them in a 95% confidence 

interval. The most pronounced differences are in the estimates for b, but these are reasonable 

when considering the range of values that 𝑏 can take. In the mathematical model, b can be any 

positive integer; in the code, it is considered initially to be nearest 1.5, 3, 6, or 20, and is more 

precisely tuned in the maximizing function after the fact. Due to its wide range, the larger root-

mean square error and standard error are to be expected. 

In analyzing the parameter outputs, I see the model trend towards estimates of 6, 1.5, 

.999, and 5 for 𝑏, 𝑚0, 𝛾𝑘̅, and 𝜎, respectively. In the code, these are possible initial values the 

startingvals function proposes to enter into the likelihood function, suggesting the function either 

failed to alter these values, or found the initial values to be acceptable.  

Noticing this possible failure, I reconstructed another Monte Carlo simulation with 

starting values of {3, 1.5, .9, .25} and a 𝑘̅ = 5. These results are listed in table B directly below 

the original trial. In this run, the sample mean values and error terms were much more 

reasonable, and far closer to the true values; in line with this, a 95% confidence interval does 

capture the true values for both 𝜎 and 𝑚0, yet is still barely off with 𝑏 and 𝛾𝑘̅. Comparing the 

two data sets to one another, I observe similar tendencies, such as the high RMSE for 𝑏, and the 

standard errors declining across the parameters. Given this new trial, and the efficacy of the 

MLE function in achieving precise parameter estimates on average, I am confident in the 

simulation means, and the MSM code overall. 
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Table 1   Monte Carlo ln L and Parameter Analysis

Table A - Ln L  Analysis

1 2 3 4 5 6 7 8
Mean ln L 5911.12 5504.26 5792.64 6526.94 6749.77 4101.57 5452.93 4519.97
ln L  SEs 123.86 84.96 88.77 122.39 133.72 89.98 95.69 100.74
Percent of times     chosen 0.1575 0.0050 0.0025 0.0275 0.7775 0.0000 0.0275 0.0025

-838.65 -1245.51 -957.13 -222.83 0 -2648.20 -1296.83 -2229.80
SE of ln L  Differences 110.02 110.81 105.90 88.66 0 95.69 109.82 93.62

1 2 3 4 5 6 7 8
Mean ln L 651.22 839.99 902.12 907.38 912.30 908.04 910.63 922.72
ln L  SEs 23.07 23.78 23.59 23.67 23.28 23.25 23.00 21.31
Percent of times     chosen 0.0000 0.0000 0.0148 0.2136 0.5015 0.1157 0.1157 0.0386

-261.09 -72.31 -10.19 -4.92 0 -4.26 -1.67 10.42
SE of ln L  Differences 16.07 11.31 6.19 5.14 0 3.38 3.66 8.67

Table B - Parameter Analysis

   = 8
True Values 8 1.5 0.75 0.5
Mean Simulated Value 8.8472 1.3878 0.6853 0.3097
SE of simmed values 0.2399 0.0131 0.0134 0.0010
RMSe of simmed values 4.8671 0.2854 0.2748 0.1913

  = 5
True Values 3 1.5 0.95 0.25
Mean Simulated Value 3.1814 1.4565 0.9473 0.2498
SE of simmed values 0.0524 0.0073 0.0024 0.0007
RMSe of simmed values 1.0630 0.1512 0.0470 0.0131

These tables present the Monte Carlo estimation data for the MSM MLE function. The first set of Table A was generated by the
True Values in first set of Table B; likewise for the second set. We see some discrepancy in model selection based on the 
generating parameters and k value. However, the true model is chosen most often on average, which provides confidence in the 
code's estimation procedure.
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Empirical Application 

My empirical analysis applies the MSM to two market exchanges, the S&P 500 and 100, 

and their volatility counterparts, the VIX and VXO respectively. I chose these due to their 

access, as Cal Poly lacks formal finance data providers to pull from, as well as their implications 

in the finance world. The S&P 500 is the most liquid and active stock exchange, with many 

pension funds, retirement funds, and long-term investments that depend on it. Its influence 

spreads throughout the finance world, and it serves as the standard benchmark for market 

comparison. If a model were found to better describe its volatility than current standard models, 

the model may help avoid disastrous pitfalls and failures such as the housing collapse, and better 

maintain all those persons’ livelihoods invested the market.  

Beyond the implications of the S&P indices, the volatility counterparts provide a kind of 

“second-moment” analysis, as the movements in these indices are entirely dependent on the 

S&P’s movement. In addition, the volatility indices exhibit more general volatility, and widen 

the range of volatility to test the application of the MSM. The assumption behind the multifractal 

structure and its application is that it follows the structure of spontaneous human interaction and 

reaction, and with the volatility indices I get a direct example of human reaction. 

Investigating the series and the relations of the VIX and VXO, I observe some interesting 

phenomena. Initially, I assumed the VIX would provide the largest returns around the GFC; 

however, in analyzing the actual returns, the maximum daily return for the VIX comes on 

February 27th, 2007, where the S&P 500 experienced a 3.5% decline. This drop, although a small 

blip on the screen in comparison to the volatility of the late 90s and late 2000s, was large relative 

to the most recent market behavior, during which the market was characterized by very mild 

volatility and moderate stable growth. The positive return on the VIX was due to the calm nature 

the S&P 500 exhibited prior to the 3.5% drop, displaying that the VIX’s movement is more due 

to expectation. As the concept goes, its agents trade off of “fear,” and sudden, unexpected 

changes spike cortisol levels in traders.  

Finally, these indices are much more “mild” in terms of volatility than the exchange rates 

first analyzed by Calvet and Fisher. In this respect I aim to provide more breadth of application 

for the MSM, and determine if its volatility components, which are well attuned to capture the 

wild nature of exchange rates, can be tamed to the milder, standard volatility of market indices. 

For sample size, my data closely mirrors the length of Calvet and Fisher’s data sets for 

analysis: S&P 500 is matched to the VIX, contains 6552 data, from 1990 until December 31st 

2015; the VIX is the total of its lifespan up to January 8th 2016, containing 6557 observations; 

the S&P 100 runs from 1983 until January 11th 2016, providing 8327 observations; and the VXO 

runs the whole of its lifespan, from 1986 until December 31st 2015, providing 7563 observations. 

Figure 2 displays the time series graphs for all 4 series time, whereas Figure 3 displays 

the two S&P indices superimposed over the volatility indices, to illustrate the relativity of 

volatility. Figure 2 displays the. Apparent spikes are prevalent, as well as volatility clustering, 

and wild jumps throughout each series. The S&P 500, with its stable growth prior to the housing 

collapse and the hectic volatility following it display the persistence of volatility trends. 
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This figure presents the daily log-returns, in percent, of the two market indices and two volatility indices. The y-axis 
is left scaled to the specific series due to wild nature of the VXO with its outlier 141% returns, and to observe the 
inherent nature of volatility within each specific index.

Figure 2
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These graphs display the VIX and VXO with their S&P counterparts graphed on top in color to illustrate the counter movements with which 
the volatility indices react to the market.
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ML Estimation Results 

Table 2 presents all 4 datasets with their parameter estimates and log-likelihoods for each 

𝑘̅ level. The volatility components increase at a rate of 2𝑘̅, meaning that with 𝑘̅ = 1 only 2 states 

are present, whereas a 𝑘̅ of 10 yields 1024. As was observed in Calvet and Fisher, 𝑚0 tends to

decline as 𝑘̅ increases: the presence of more volatility states allows for more granular levels of 

volatility with less variable values of the 𝑀𝑘,𝑡 multipliers.

The most persistent low level multiplier comes in the S&P 100 (1/𝛾1), with a duration of

approximately 825 years, or 25 times the sample size; in contrast, the most persistent component 

for the VIX lasts roughly 79 days. In essence, this means we would expect the S&P 100’s most 

stable frequency to change only once every 825 years, whereas the most stable for the VIX is 

expected to change every 79 days. 

Using the same two indices as examples, by contrast, the most frequent component for 

the VIX switches about once every 1.4 days, and the same component for the S&P 100 switches 

about once every day. This indicates that the more stable volatility levels remain constant for the 

S&P 100, with only the highest frequency multipliers switching often, whereas the VIX 

multipliers change consistently and thoroughly across all frequencies. 

Model Selection 

Table 3 presents an analysis of the significance of log-likelihood differences between 

models to select the most accurate 𝑘̅ value. To assess significance, I employ two tests: Vuong’s 

(1989), and Clarke’s (2007) significance test. Vuong’s test is well known in model comparison 

literature and is the standard for comparing the difference in log-likelihoods. It evaluates the sum 

of the pointwise log-likelihood differences with respect to the variance of each model’s log-

likelihoods, and uses a BIC approach to penalize models with more parameters.  

However, Vuong’s test imposes a normal assumption on the distribution of log-

likelihoods, and this assumption does not hold well in the MSM log-likelihood data; this is why I 

employ the lesser-known Clarke’s test in conjunction with Vuong. Clarke’s test looks at the 

pointwise log-likelihood differences as a binomial trial, with the number of differences greater 

than 0 as to the successes, and the total number of log-likelihoods as the number from which the 

successes are drawn. It then tests whether the probability of the number of successes is equal to 

.5, the expected probability of success if the two models are equivalent. The intuition is that, if 

the models were equivalent descriptors for the data, then half of the log-likelihoods would be 

greater than 0, and half would be less than 0.  

The power in Clarke’s parameter-free test is that we avoid assuming normality for the 

distribution of log-likelihoods; in fact, Clarke found his test to outperform Vuong’s when the 

distribution of log-likelihoods displays high kurtosis, and that it was most effective when the 

data were distributed double-exponentially. In my analysis, the log-likelihoods displayed very 

high levels of kurtosis, so I found it apt to apply this test. However, a drawback to the Clarke’s 

test is that it is somewhat binary in its decision process: with respect to capturing a 50% success 

rate in a binomial test, the confidence intervals are very tight, providing p-values with little grey 
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area in between to assess significance level. This is why I use both tests: Clarke’s to provide a 

more definitive answer, and Vuong’s to provide more middle ground to the results. 

In my table I present these two tests’ p-values, where the null hypothesis is that the 2 

models are equivalent descriptors for the data. The results are about as expected. As 𝑘̅ increases, 

the log-likelihood increases, to a point. Across the board, the differences in log-likelihoods 

decrease as 𝑘̅ increases, which follows the intuition, as a higher 𝑘̅ can accommodate more 

granular changes in the data. The differences in log-likelihoods are least pronounced on those 

models nearest to the k with the highest log-likelihood, with the exception of the S&P 500, 

where 𝑘̅s of 5 and 9 were found to be worse descriptors of the data at only the 25% significance 

level. The Clarke’s test provides even more resounding evidence to dismiss the null hypothesis at 

the 1% significance level for all 𝑘̅. 

Matt Fagan 13



Table 2   All MSM Parameters (Model with highest ln L in bold)

1 2 3 4 5 6 7 8 9 10

S&P 500
b 3.8110 9.2250 7.9217 4.7030 3.1782 3.0239 2.1366 2.2593 1.8247 3.3925
m0 1.7297 1.6141 1.5188 1.4662 1.4222 1.4208 1.3590 1.3605 1.3102 1.4229

0.0248 0.0425 0.0617 0.0663 0.0617 0.0596 0.0621 0.0654 0.0785 0.0647
0.2174 0.2315 0.2469 0.2614 0.2480 0.2084 0.2177 0.2723 0.2075 0.9801

ln L 21137.40 21377.65 21431.25 21449.22 21464.26 21464.18 21466.71 21465.77 21465.69 21460.22

S&P 100
b 5.4520 11.6025 7.4998 4.7522 11.6479 7.1713 7.1499 7.1520 5.2387 2.7102
m0 1.7124 1.5977 1.5349 1.4785 1.4501 1.4046 1.4043 1.4044 1.3682 1.3892

0.0208 0.0524 0.0689 0.0592 0.7268 0.8199 0.8183 0.8181 0.9346 0.0659
0.2261 0.2248 0.2544 0.2954 0.2709 0.2366 0.3062 0.2586 0.1673 0.7564

ln L 26695.58 26943.71 27028.28 27063.36 27066.59 27075.64 27075.06 27075.10 27078.93 27070.96

VIX
b 3.1410 7.8858 5.3058 4.0003 2.9393 2.3865 2.0802 1.8924 1.7607 1.6616
m0 1.6395 1.5378 1.4616 1.4061 1.3633 1.3312 1.3065 1.2870 1.2709 1.2571

0.0893 0.2314 0.3593 0.5407 0.6058 0.6368 0.6583 0.6792 0.6954 0.7076
1.1362 1.1338 1.1168 1.0841 1.0539 1.0322 1.0214 1.0150 1.0103 1.0064

ln L 9339.32 9404.81 9422.23 9428.22 9430.32 9431.35 9431.90 9432.25 9432.51 9432.69

VXO
b 4.3370 7.7262 6.7933 7.5685 4.7721 4.3037 3.5349 2.7958 2.3164 3.6765
m0 1.6834 1.5884 1.5160 1.5144 1.4494 1.4324 1.3952 1.3591 1.3293 1.3971

0.0862 0.1817 0.3754 0.4640 0.6846 0.6220 0.7617 0.8062 0.8239 0.7804
1.1979 1.1893 1.1063 1.4456 1.2707 1.5213 1.3743 1.2895 1.1892 1.2726

ln L 10467.32 10600.27 10629.20 10649.66 10654.26 10661.54 10665.18 10667.30 10669.03 10664.09

This table shows ML estimation results for the binomial multifractal model for all four market indices. Columns correspond to the 
number of frequencies k in the estimated model. The likelihood function increases with the number of volatility frequencies overall, 
yet reaches a maximum log-likelihood at various levels of complexity. For example, the S&P 500 requires only a k  of 7, whereas the 
VIX multifractal model attains its highest log-likelihood at the maximum k  of 10

�𝑘𝑘
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Table 3    Multifractal Model Selection

1 2 3 4 5 6 7 8 9 10
S&P 500

ln L 21137.4 21377.65 21431.25 21449.22 21464.26 21464.18 21466.71 21465.77 21465.69 21460.22

V Score 4.06827 1.100276 0.43808 0.216115 0.030269 0.031236 0 0.011615 0.012599 0.080112
V Test 0.0000 0.0000 0.0002 0.0013 0.2143 0.1932 0 0.1014 0.2432 0.0403

Clarke Score 3667 3442 3628 3763 3673 3189 0 4015 3267 3850
Clarke Test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0 0.0000 0.0096 0.0000

S&P 100
ln L 26695.58 26943.71 27028.28 27063.36 27066.59 27075.64 27075.06 27075.1 27078.93 27070.96

V Score 4.200972 1.481811 0.555023 0.170652 0.135236 0.036019 0.042341 0.041963 0 0.087296
V Test 0.0000 0.0000 0.0004 0.0970 0.0273 0.0878 0.1799 0.1438 0 0.2517

Clarke Score 4389 4256 4206 4240 4420 4211 4299 4223 0 4374
Clarke Test 0.0000 0.0011 0.0057 0.0021 0.0000 0.0051 0.0001 0.0037 0 0.0000

VIX
ln L 9339.316 9404.815 9422.226 9428.222 9430.325 9431.353 9431.897 9432.254 9432.508 9432.686

V Score 1.153061 0.344193 0.129179 0.055131 0.029159 0.016458 0.009739 0.00533 0.002192 0
V Test 0.0000 0.0000 0.0050 0.0439 0.0783 0.0949 0.0993 0.1039 0.1208 0

Clarke Score 3643 3901 3651 3887 3981 4017 4011 4056 4056 0
Clarke Test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

VXO
ln L 10467.32 10600.27 10629.2 10649.66 10654.26 10661.54 10665.18 10667.3 10669.03 10664.09

V Score 2.319406 0.790627 0.457983 0.222678 0.169754 0.086052 0.044196 0.019823 0 0.05678
V Test 0.0000 0.0003 0.0113 0.0021 0.0135 0.0051 0.0108 0.0287 0 0.0462

Clarke Score 4044 3865 3576 4194 4651 3973 4480 4506 0 4267
Clarke Test 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000

This table reports the t -ratios and one-sided p -values for the log-likelihood difference of the model in a given column
the model with the highest log-likelihood. The Vuong Test uses the Vuong (1989) method to asses log-likelihood difference,
the Clarke Test uses the non-parametric method developed by Clarke (2003) to assess the same difference. A low p -value 
for the each test means the given model would be rejected in favor of the model yielding the highest log-likelihood

�𝑘𝑘
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In Sample Comparison 

In comparing the MSM to normal-GARCH models, the MSM significantly outperforms 

at all significance levels and for all indices. It provides higher log likelihoods and lower BIC 

values, and the Vuong (1989) and Clarke (2007) tests confirm these differences as statistically 

significant. The GARCH parameters are available in table 4, and the in-sample comparison data 

is available in table 5. 

However, the MSM does not fare as well against the student-GARCH. Examining the 

log-likelihoods for the MSM and student-GARCH, the student-GARCH provides higher 

likelihoods for all indices except the VXO, where the MSM provides a slight bump over the 

student-GARCH model. The BICs follow a similar trend, with the MSM only coming in lower 

than the student-GARCH with the VXO, albeit by a mere thousandths-place difference. 

To make claims as to the significance of these log-likelihood and BIC differences, I turn 

to Vuong’s and Clarke’s tests. With the student-GARCH, we fail to reject the null hypothesis 

that the MSM outperforms the student-GARCH at all valuable significance levels for all indices; 

Clarke’s test affirms this position with its p-value of 1, indicating that the null hypothesis of a 

binomial distribution of .5 is rejected in favor of the student-GARCH. In context of the test, this 

means the number of positive differences in pointwise log-likelihoods was significantly below 

half in comparing the MSM to the student-GARCH. 

Yet, there is some saving information here for the MSM. Looking across the indices, we 

see the p-values in favor of the student-GARCH decline with each index – or, rather, as general 

volatility increases. As the volatility of the series increases, it seems the evidence increases in 

favor of rejecting the null-hypothesis that the student-GARCH is a better descriptor for the data. 

In essence, we see the MSM’s performance directly correlated with the volatility of the index, 

and its efficacy more pronounced when the index is characterized by extremely large outliers.  

Looking into the VXO, we observe a single daily return of 1.42, or 142%, followed by a -

0.64, or -64%, return two days later; in the original MSM analysis by Calvet and Fisher (2004, 

2008), the currency exchanges they used were characterized by numerous instances of these 

extreme outliers, some even reaching as far as 500%. In addition, the standard deviations of my 

indices are significantly lower than those of Calvet and Fisher: as a highlight, the standard 

deviation for the VXO data is .069, whereas the lowest standard deviation of Calvet and Fisher’s 

indices is .274 (CAD v USD Exchange Rate). These findings, together with those of Calvet and 

Fisher, suggest the MSM describes better those indices in which extreme values are more the 

norm and where changes are more “wild,” whereas the GARCH remains superior for less 

volatile time series. 
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Table 4    GARCH Parameters

v
S&P 500

Student-GARCH 7.61E-07 0.0700 0.9251 7.1364
Normal-GARCH 1.19E-06 0.0797 0.9106 -

S&P 100
Student-GARCH 8.67E-07 0.0621 0.9317 6.3694
Normal-GARCH 1.60E-06 0.0838 0.9045 -

VIX
Student-GARCH 0.000306 0.1228 0.8019 5.7918
Normal-GARCH 0.000346 0.1088 0.8041 -

VXO
Student-GARCH 0.000206 0.1308 0.8310 4.9951
Normal-GARCH 0.000432 0.1589 0.7547 -

This table shows all ML parameter estimates for the two comparative 
GARCH models for all indices. Not included are the standard errors
or significance tests, as these are more accessible in the included R code.
All terms were deemed significant, except the Normal-GARCH coefficients.
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Table 5     In-sample model comparison

BIC p -value vs. multifractal
No. of Params ln L MSM BICs Vuong Clarke

S&P 500
Binomial MSM 4 21466.71 -6.5474
Norm-GARCH 3 21366.07 -6.5180 0.0000 0.0091
Student-GARCH 4 21481.76 -6.5519 0.8952 1.0000

S&P 100
Binomial MSM 4 27078.93 -6.4995
Norm-GARCH 3 26875.56 -6.4518 0.0003 0.0000
Student-GARCH 4 27116.98 -6.5087 0.9869 1.0000

VIX
Binomial MSM 4 9432.69 -2.8718
Norm-GARCH 3 9179.47 -2.7959 0.0000 0.0000
Student-GARCH 4 9436.11 -2.8728 0.4510 1.0000

VXO
Binomial MSM 4 10669.03 -2.8167
Norm-GARCH 3 10199.17 -2.6936 0.0000 0.0000
Student-GARCH 4 10665.79 -2.8158 0.3278 1.0000

This table presents the in-sample comparison statistics. The BICs are calculated by (-2 ln L  +� NP  ln T )/T ,
where T is the length of a given series, and NP the number of parameters. The last two columns display
p -values of a given test of the MSM vs a corresponding GARCH model. A low p -value indicates the given
GARCH model would be rejected in favor of the MSM. The first p -value uses Vuong's (1989) method, 
and the second uses Clarke's (2003) method.
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Out of Sample Forecasting 

I now test each model’s forecasting ability at horizons of 1, 5, 10, 20, and 50 days. To 

evaluate out of sample forecasting I estimate each model’s parameters on the first half of each 

data set and use the last half for fitting forecast data. To compare each model’s forecasting 

efficacy, I used the Mincer-Zarnowitz ordinary least squares regression model, as it was the 

means employed by Calvet and Fisher (2004) in their own paper. The equation is as follows: 

𝑥𝑡+𝑛
2 = 𝛼 + 𝛽Ε𝑡[𝑥𝑡+𝑛

2 ] + 𝜇𝑡

Where 𝑛 is the forecast horizon, and Ε𝑡[𝑥𝑡+𝑛
2 ] is the expected value of the squared return at time

𝑡 from 𝑛 days prior. The traditional Mincer-Zarnowitz uses 𝛾0 and 𝛾1 as opposed

to 𝛼 and 𝛽 respectively; I choose these as they are easier to represent in the code. A perfect 

predictor would have an 𝛼 of 0 and a 𝛽 of 1, therefore I use these as my null hypotheses in 

evaluating the coefficients. The results are presented in table 6. 

Results 

Put simply, all models are comparatively equal predictors, with idiosyncratic differences arising 

across indices and horizons.  

For 1 step ahead predictions, the MSM is only slightly more effective in forecasting for 

the VXO, as we fail to reject the null hypothesis that the Beta coefficient is equal to 1 at the 5% 

significance level, whereas this same hypothesis is rejected for the normal- and student-GARCH 

at the 5% level; however, the 3 models are equivalent at the 10% and 20% significance levels. 

Beyond this, in comparing the mean squared errors (MSEs) for each predictor, the MSM is 

rejected in favor of the normal-GARCH and the student-GARCH for the VIX at the 5% level. 

This is the only instance across all horizons and across all indices that the difference in MSEs is 

significant, with the difference in MSEs being approximately zero for all other indices at each 

prediction horizon. 

As the prediction horizon increases, some interesting trends emerge. The following 

discussion focuses on the 50-step horizon data. With respect to the less volatile indices (S&P 

500, S&P 100), the Beta coefficient stays closer to 1, and for the S&P 500 I fail to reject the null 

hypothesis that the Beta is equal to 1, whereas I reject this for the normal- and student-GARCH 

at all possible significance levels. With the more volatile indices (VIX, VXO), the Beta 

coefficient for the MSM, although not equal to 1, is significantly lower than the Betas for both 

the normal and standard-GARCH, with each value equal to about 6.3, 72.5, and 11.9, 

respectively. Looking at the p-values for the Beta coefficient, I see the null hypothesis for the 

MSM is rejected at the 1% significance level, whereas I fail to reject this for the Normal- and 

Student-GARCH; however, this is due to their massive standard errors, which show that the 95% 

confidence interval for the Beta coefficients contain 0 as well, meaning that the Beta term for the 

Normal- and Student-GARCH models are altogether insignificant. 
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This anomaly is even more pronounced in estimating the VXO, with the Beta coefficient 

blowing up to about 912 in the Normal-GARCH fit, and the standard error reaching 2188. This 

suggests the Normal-GARCH is a wholly ineffective predictor for the VIX and VXO. The 

student-GARCH proves to be far more reasonable than its normally distributed counterpart, with 

its Beta coefficient remaining at a mild 1.42, and its error term 1.08; however, this too contains 0 

in its 95% confidence interval, leading me to conclude that the term is insignificant. The MSM, 

with its beta of .65 and its standard error of .13, remains significant, although the null hypothesis 

that the Beta coefficient is equal to 1 is rejected. 

Looked at holistically, these results suggest that the MSM underperforms at shorter time 

horizons, but performs significantly better as time horizon increases. In addition, this disparity in 

performance with respect to the GARCH is more pronounced in the more volatile indices (VIX, 

VXO), suggesting that the MSM better captures outliers, more extreme values, and more erratic 

time series behavior in large prediction horizons. Of the two GARCH models, the normal 

GARCH’s loss of efficacy as time horizon increases is most pronounced, with the Beta growing 

to capture more extreme observations at the 20 step horizon, whereas the student-GARCH 

remains on par with the MSM up until the 50 step horizon. 

This is due to the nature of the models. In examining the projected values, the normal 

GARCH trends towards the mean of the data, projecting the estimated mean of squared returns 

for each return. The student-GARCH accounts for more variability with its t-distribution, and 

therefore projects near the mean with some miniscule variability. In addition, the student-

GARCH more accurately captures the observed mean of the data: for example, with the VXO, 

the normal-GARCH projects .00398 constant at the 50-step horizon, whereas the student-

GARCH projects .00408, .00405, .00403, .00415, etc., and the observed mean of the squared 

returns is .00473. 

Herein lies the power of the MSM. Although it too does eventually trend down towards 

the mean, due to its Markov driver and conditional independence, the projections persist longer, 

and the model takes far longer to reach the mean. In testing persistence, the MSM still maintains 

some variability at a 1000-step horizon, and requires a prediction horizon greater than 5000 to 

project a constant mean. However, the mean estimated by the MSM tends to be above that of the 

observed mean – for example, with the VXO data, the MSM trends towards .00553 as an 

estimate for squared returns, whereas the observed mean is .00473. 
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Table 6  Out-of-Sample Forecast Data
1 Step Ahead
Estimate Std. Error Pr(>|t|) R2 MSE

S&P 500 MSM-Alpha -8.9E-05 0.000012 0.0000 0.17016 0.00000023
MSM-Beta 1.89502 0.073073 0.0000 ---

Norm-Alpha 0.000004 0.000009 0.6550 0.233051 0.00000022
Norm-Beta 0.962555 0.030497 0.2200 (0.4118)

Std-Alpha 0.000005 0.000009 0.5900 0.224656 0.00000022
Std-Beta 0.9422 0.03057 0.0590 (0.4234)

S&P 100 MSM-Alpha -6.7E-05 0.00001 0.0000 0.170178 0.00000019
MSM-Beta 1.538285 0.052616 0.0000 ---

Norm-Alpha 0.000001 0.000008 0.8530 0.215857 0.00000018
Norm-Beta 1.015833 0.029995 0.5980 (0.4261)

Std-Alpha -3E-06 0.000008 0.6960 0.194012 0.00000019
Std-Beta 1.08748 0.034336 0.0110 (0.4613)

VIX MSM-Alpha -0.00059 0.000387 0.1260 0.067647 0.00011979
MSM-Beta 1.257776 0.081387 0.0020 ---

Norm-Alpha -0.00852 0.000294 0.0000 0.447945 0.00007093
Norm-Beta 3.438573 0.066661 0.0000 (0.0281)

Std-Alpha -0.00643 0.000275 0.0000 0.41429 0.00007525
Std-Beta 2.808291 0.058309 0.0000 (0.0408)

VXO MSM-Alpha 0.000057 0.000388 0.8830 0.064339 0.00015360
MSM-Beta 0.962567 0.059582 0.5300 ---

Norm-Alpha 0.001543 0.000304 0.0000 0.070267 0.00015263
Norm-Beta 0.81726 0.048262 0.0000 (0.4892)

Std-Alpha 0.00132 0.000308 0.0000 0.074381 0.00015195
Std-Beta 0.817997 0.046851 0.0000 (0.4818)

These tables report the results from the Mincer-Zarnowitz OLS regression of a given n-ahead 
forecast. For an unbiased forecast we expect an Alpha of 0 and a Beta of 1; the p -values 
provided in the coefficent estimates compare the observed estimates to these null hypotheses. 
In the last two columns I report the R 2  and MSEs for each model and index, as well as the 
p -values of MSE difference in parentheses underneath the MSEs. A low p -value indicates
the given model produces a significantly lower MSE than the MSM
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Table 6 cont.
5 Ahead
Estimate Std. Error Pr(>|t|) R2 MSE

S&P 500 MSM-Alpha -9.8E-05 0.000013 0.0000 0.14994 0.00000028
MSM-Beta 1.976499 0.082214 0.0000 ---

Norm-Alpha 0.000006 0.000009 0.5060 0.218941 0.00000022
Norm-Beta 0.944824 0.031185 0.0770 (0.4062)

Std-Alpha 0.000009 0.00001 0.3420 0.208145 0.00000022
Std-Beta 0.910214 0.031023 0.0040 (0.4207)

S&P 100 MSM-Alpha -6.7E-05 0.000011 0.0000 0.142419 0.00000023
MSM-Beta 1.549049 0.058899 0.0000 ---

Norm-Alpha -1E-06 0.000008 0.9260 0.205059 0.00000019
Norm-Beta 1.038196 0.031682 0.2280 (0.4029)

Std-Alpha 0.000002 0.000009 0.8530 0.176063 0.00000019
Std-Beta 1.064736 0.035696 0.0700 (0.4475)

VIX MSM-Alpha -0.00126 0.00064 0.0490 0.027194 0.00012976
MSM-Beta 1.524526 0.158494 0.0010 ---

Norm-Alpha -0.00076 0.00061 0.2110 0.025393 0.00012533
Norm-Beta 1.495116 0.160938 0.0020 (0.5028)

Std-Alpha 0.000468 0.00048 0.3290 0.026204 0.00012522
Std-Beta 1.115844 0.118213 0.3270 (0.5015)

VXO MSM-Alpha 0.000979 0.000463 0.0350 0.029023 0.00016476
MSM-Beta 0.792293 0.074239 0.0050 ---

Norm-Alpha 0.000456 0.000548 0.4050 0.024361 0.00016024
Norm-Beta 1.153869 0.118193 0.1930 (0.5082)

Std-Alpha 0.002146 0.00036 0.0000 0.031035 0.00015914
Std-Beta 0.681611 0.061717 0.0000 (0.4965)
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Table 6 cont.
10 Ahead
Estimate Std. Error Pr(>|t|) R2 MSE

S&P 500 MSM-Alpha -8.3E-05 0.000014 0.0000 0.115973 0.00000025
MSM-Beta 1.847448 0.089148 0.0000 ---

Norm-Alpha 0.000018 0.00001 0.0580 0.175716 0.00000023
Norm-Beta 0.860429 0.032586 0.0000 (0.4220)

Std-Alpha 0.000022 0.00001 0.0260 0.16735 0.00000024
Std-Beta 0.820359 0.031995 0.0000 (0.4328)

S&P 100 MSM-Alpha -5.1E-05 0.000012 0.0000 0.109042 0.00000021
MSM-Beta 1.435399 0.063598 0.0000 ---

Norm-Alpha 0.000009 0.000009 0.3150 0.163999 0.00000020
Norm-Beta 0.985274 0.034494 0.6690 (0.4182)

Std-Alpha 0.000015 0.000009 0.0950 0.141147 0.00000020
Std-Beta 0.986637 0.037734 0.7230 (0.4520)

VIX MSM-Alpha -0.00204 0.000943 0.0310 0.015345 0.00012679
MSM-Beta 1.8096 0.251084 0.0010 ---

Norm-Alpha -0.00458 0.001189 0.0000 0.018147 0.00012643
Norm-Beta 2.669026 0.340569 0.0000 (0.4957)

Std-Alpha -0.00111 0.000765 0.1480 0.017667 0.00012649
Std-Beta 1.615547 0.208927 0.0030 (0.4964)

VXO MSM-Alpha 0.001964 0.00052 0.0000 0.01342 0.00016223
MSM-Beta 0.615157 0.085056 0.0000 ---

Norm-Alpha -0.00629 0.001456 0.0000 0.016943 0.00016165
Norm-Beta 2.867196 0.352904 0.0000 (0.4938)

Std-Alpha 0.002462 0.000443 0.0000 0.014548 0.00016204
Std-Beta 0.64359 0.085481 0.0000 (0.4980)
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Table 6 cont.
20 Ahead
Estimate Std. Error Pr(>|t|) R2 MSE

S&P 500 MSM-Alpha -5.2E-05 0.000015 0.0010 0.073611 0.00000026
MSM-Beta 1.585544 0.098384 0.0000 ---

Norm-Alpha 0.000037 0.00001 0.0000 0.119379 0.00000025
Norm-Beta 0.732845 0.034843 0.0000 (0.4445)

Std-Alpha 0.000042 0.00001 0.0000 0.113568 0.00000025
Std-Beta 0.682773 0.033389 0.0000 (0.4515)

S&P 100 MSM-Alpha -2.2E-05 0.000013 0.0780 0.070283 0.00000022
MSM-Beta 1.2375 0.069806 0.0010 ---

Norm-Alpha 0.000025 0.000009 0.0070 0.106367 0.00000021
Norm-Beta 0.893561 0.040193 0.0080 (0.4497)

Std-Alpha 0.000037 0.000009 0.0000 0.092595 0.00000021
Std-Beta 0.855931 0.041574 0.0010 (0.4688)

VIX MSM-Alpha -0.00155 0.001709 0.3660 0.003712 0.00012859
MSM-Beta 1.759235 0.485247 0.1180 ---

Norm-Alpha -0.00895 0.005126 0.0810 0.001841 0.00012884
Norm-Beta 4.057425 1.532503 0.0460 (0.5029)

Std-Alpha -0.0012 0.002227 0.5910 0.001793 0.00012884
Std-Beta 1.714089 0.654801 0.2760 (0.5029)

VXO MSM-Alpha 0.002876 0.000603 0.0000 0.005047 0.00016381
MSM-Beta 0.450924 0.100617 0.0000 ---

Norm-Alpha -0.0209 0.012607 0.0970 0.000892 0.00016450
Norm-Beta 6.597361 3.160385 0.0770 (0.5072)

Std-Alpha 0.003836 0.000734 0.0000 0.001061 0.00016447
Std-Beta 0.36342 0.162597 0.0000 (0.5070)
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Table 6 cont.
50 Ahead
Estimate Std. Error Pr(>|t|) R2 MSE

S&P 500 MSM-Alpha 0.000023 0.000017 0.1790 0.021234 0.00000028
MSM-Beta 0.962298 0.114214 0.7410 ---

Norm-Alpha 0.000085 0.000011 0.0000 0.029468 0.00000028
Norm-Beta 0.403087 0.040522 0.0000 (0.4906)

Std-Alpha 0.000089 0.000011 0.0000 0.030284 0.00000028
Std-Beta 0.364708 0.036157 0.0000 (0.4896)

S&P 100 MSM-Alpha 0.00005 0.000014 0.0000 0.01984 0.00000023
MSM-Beta 0.742262 0.080856 0.0010 ---

Norm-Alpha 0.000068 0.000011 0.0000 0.025776 0.00000023
Norm-Beta 0.63005 0.060114 0.0000 (0.4921)

Std-Alpha 0.000083 0.00001 0.0000 0.026984 0.00000023
Std-Beta 0.569056 0.053044 0.0000 (0.4905)

VIX MSM-Alpha -0.01638 0.006618 0.0130 0.002811 0.00012976
MSM-Beta 6.320644 1.988766 0.0080 ---

Norm-Alpha -0.23562 0.447141 0.5980 -0.00022 0.00013016
Norm-Beta 72.50552 134.9373 0.5960 (0.5047)

Std-Alpha -0.03493 0.064682 0.5890 -0.00019 0.00013015
Std-Beta 11.91873 19.48207 0.5750 (0.5046)

VXO MSM-Alpha 0.001666 0.000787 0.0340 0.006322 0.00016476
MSM-Beta 0.670383 0.134764 0.0140 ---

Norm-Alpha -3.6211 8.701799 0.6770 -0.00022 0.00016585
Norm-Beta 911.8896 2188.06 0.6770 (0.5114)

Std-Alpha -0.00038 0.004445 0.9310 0.000192 0.00016578
Std-Beta 1.421449 1.084407 0.6980 (0.5107)
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Conclusion 

In looking at the entirety of my analysis, I can conclude the MSM does outperform the 

Normal-GARCH model in describing the S&P 500, S&P 100, VIX, and VXO; however, I cannot 

conclude the MSM outperforms the Student-GARCH. It seems the mixture of Gaussians that the 

MSM uses to describe the data tend to overfit the realm of empirical probability observed in the 

market indices, whereas a Student-t distribution, with its longer tails and larger accommodation 

and outliers than a standard Gaussian, is significantly sufficient in describing the volatility of the 

S&P 500 and 100, with a declining significance towards the VIX and VXO. 

However, consider this a mere rake across the surface of the MSM. With its numerous 

extensions in continuous time form, multivariate form, and equilibrium theory, the vast realm of 

possibility available to the MSM is not to be discounted by these findings. Looking at the trend 

in increased efficacy as overall volatility increases, it leads me to suspect the MSM is a superior 

predictor for increasingly volatile series. In application, this could be useful for options pricing, 

better accounting for the range of possible values; Chuang et al. (2013) suggest this in their paper 

focused on individual stock options of the S&P 100. Going further, as the world of financial 

engineering grows more creative in its mathematical ingenuity to create more volatility and other 

reactionary indices, I suspect the volatility observed in these will be far more wild, and the MSM 

holds promise to account for their realm of possibility. 

Looking at the mathematical tools which constitute the MSM, the multifractal Markov 

generator is also extremely promising for application beyond mere financial and daily return 

description. Given my romantic tendencies and evidence in nature, I truly believe the multifractal 

mathematics to be the best descriptor for human interaction. With the growing trend in looking at 

more micro-economics; in applying multifractal philosophy to model market behavior and to 

better describe Human agents as opposed to Econs, in the terms of Kahneman (2011); in looking 

at the interaction between agents and how these coalesce to produce the macro-effects we 

experience [McKelvey, Lichtenstein, and Andriani (2012), McKelvey, Yalamova (2011)]; I 

believe the multifractal markov model can be applied to this realm of interaction, and help bridge 

the gap between empirical dependence and statistical independence. Statistical science, the only 

available tool for economic scientists, requires clean distributions for finite moments; yet, in the 

empirical world, the arena for applying economic science, we observe disjoint and heterogeneous 

results, the entirety of which finite moments and clean distributions fail to capture. 

So much of our investigations into nature, into its fundamental interaction and laws, are 

made more fruitful in applying multifractal intuition. We see results in bloodwork, in trees, in 

avalanches, in our neural networks, in our social networks, in the architecture of galaxies and 

space [Andriani, McKelvey, (2007), Andriani, McKelvey (2007), Mandelbrot (2010), Schwarz & 

Jersey (2011)]. Coming back to economics, no realm of work is more tangible, or reaches further 

in impact, than the work with money; and, the mathematics and models we apply to our data, the 

level of understanding we possess of our fiscal nature, could help practitioners prevent disaster, 

and allow for more global prosperity.  
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In our work as economists, we must take our efforts seriously, we must take these results 

from nature as legitimate, and we must work to conceive of new ways to apply what they reveal 

of our world to our monetary policy. In the spirit of McKelvey and Andriani, I call for a new null 

hypothesis [Andriani P., McKelvey, B. (2007), Andriani P., McKelvey, B. (2007)]. I call for an 

assumption of interaction and interdependence, as this is the true nature of animate, and 

inanimate, behavior. And, in the efforts of applying and assessing this new null hypothesis, I see 

multifractal statistics as an invaluable asset. 

As for monetary application, I believe the MSM would better suit individual firm returns, 

and the options tied to each. I believe the MSM could provide better guides to hedging strategies 

and the nature of interaction – especially with more extensions, such as a multivariate MSM, or 

continuous-time, both of which Calvet and Fisher have outlined in their book on multifractal 

volatility. I strongly recommend their book to any financial academics and practitioners who 

seek a new perspective on finance. Looking beyond the realm of finance, I believe the 

Multifractal Markov driver could aid models of economic agents and their interaction, and 

describe other observed behavior, such as the sociological analysis of “viral” trends and memes, 

or the social tokens that catch on and become widespread, as well as the behavior of post-market 

drift, and other anomalies to the perfect market hypothesis. It is time we reassess our process of 

inquiry, and work ceaselessly to better capture the breadth of our behavior 
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